Abstract
In the present paper, the notions of compatible and almost compatible Riemannian and pseudo-Riemannian metrics are introduced. These notions are motivated by the theory of compatible Poisson structures of hydrodynamic type (local and nonlocal) and generalize the notion of flat pencils of metrics, which plays an important role in the theory of integrable systems of hydrodynamic type and Dubrovin's theory of Frobenius manifolds. Compatible metrics generate compatible Poisson structures of hydrodynamic type (these structures are local for flat metrics and nonlocal if the metrics are not flat). For the “nonsingular” case in which the eigenvalues of a pair of metrics are distinct, we obtain a complete explicit description of compatible and almost compatible metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.