Abstract

Block or graft copolymers located at polymer-polymer interfaces have been considered as ideal compatibilizers for immiscible polymer blends. Herein, we report a novel compatibilization mechanism using Janus nanomicelles (JNMs) formed in situ at the polymer-polymer interface in immiscible polyvinylidene fluoride (PVDF)/polylactic acid (PLLA) blends. A small amount of a reactive graft copolymer, poly(styrene-co-glycidyl methacrylate)-graft-poly(methyl methacrylate) (P((S-co-GMA)-g-MMA)), is incorporated into the PLLA/PVDF blends by simple melt mixing. The in situ grafting of PLLA chains onto P((S-co-GMA)-g-MMA) during melt mixing leads to the formation of numerous JNMs with a shell structure consisting of PLLA and PMMA hemispheres. These JNMs are located at the PLLA/PVDF interface, where they behave as effective compatibilizers for the immiscible PLLA/PVDF blends. This interfacial micelle compatibilization (IMC) mechanism opens new opportunities to exploit interfacial emulsification using JNMs and should be of great significance in the compatibilization of polymer alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call