Abstract

The effects of organically modified and pristine nanoclays on the kinetics of thermodynamic equilibrium state attainment for semicrystalline binary blends of polyethylene (PE)/ethylene-vinyl acetate copolymer (EVA) have been investigated. Due to the non-equilibrium compatibilization mechanism, intercalated organoclay results in a slower rate of phase miscibility change at lower annealing temperatures, thereby worsening the PE/EVA compatibility state. In contrast to poorly dispersed pristine nanoclay, the homogeneous state is obtained at higher or equal rates by adding organoclay at higher annealing temperatures because of the dominant role of nanofiller equilibrium compatibilization mechanism. Phase diagrams of these UCST blends determined by a dynamic method shifts to higher temperatures by the incorporation of nanofillers and the unexpected reduction in miscibility window area is much more noticeable for nanocomposites having highly restricted molecular movements. This can verify that dynamic methods lose their efficiency for measuring the equilibrium phase diagram of polymer blends containing nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call