Abstract

Tetrabutylammonium tetraphenylborate (TBATPB) and triacetin were added during extrusion to melt blends of polylactic acid (PLA) and polycarbonate bisphenol A (PC) through a reactive compatibilization approach in order to enhance the materials' mechanical properties and thermal resistance. Dynamic mechanical thermal analysis revealed a new peak attributable to the glass transition temperature (Tg) of the PLA-PC copolymer at a temperature lower than the Tg typical of PC and higher than the Tg of PLA. The results of tensile tests, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy, size exclusion chromatography, and NMR analysis for the compatibilized and uncompatibilized blends were, on the whole, in agreement with the formation of the PLA-PC copolymer due to the action of the TBATPB and triacetin during the short extrusion time. The mechanical behaviour, morphology, and thermal properties of the PLA/PC compatibilized blends were investigated as a function of composition, with the intention of broadening the utility of these biobased-blends. Finally, a general scheme for the reactions that occur during extrusion was proposed based on the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.