Abstract

The aim of this study was to evaluate the repair bond strength of silorane composites using either the silorane or methacrylate-based restorative systems. Expired silorane composite was used as the substrate material in all experimental groups. Silorane blocks (5 × 5 × 4 mm) were fabricated and stored at 37 °C for 24 h. Six experimental groups were developed according to the repair: I-silorane composite (no intermediary); II-P90 Bond/Silorane; III-P90 Adhesive System (primer/bond)/silorane; IV-P90 bond/Scotchbond Universal/methacrylate composite (Filtek P60); V-Scotchbond Universal/methacrylate; and VI-silane/Adper Single Bond 2/methacrylate. The repaired blocks were stored for 24 h at 37 °C, and then sectioned, yielding stick-shaped specimens (0.5 mm2) that were tested in tensile (0.5 mm/min). The results were analyzed using ANOVA/Tukey test (α = 0.05). The interfacial micromorphology and nanoleakage were also analyzed under SEM. Scotchbond Universal/methacrylate composite, either associated with the P90 bond or not, exhibited similar bond strength to that of P90 Adhesive System/silorane composite. Scotchbond Universal either associated with the P90 Bond or not to repair the silorane allowed no pre-testing failures. The worst scenarios were repairing the silorane with no intermediary (G-I) or combination silane/Adper Single Bond 2/methacrylate composite (G-VI) that presented significantly lower bond strengths and higher incidences of pre-failure testing. The importance of the silane was not confirmed. Characteristic micromorphology and no signs of nanoleakage were identified in all experimental groups. The silane-containing, phosphorylated methacrylate-based adhesive associated with a methacrylate composite was proven to reliably repair the expired composite in a similar way to that of the application of dedicated silorane adhesive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.