Abstract

High-level (MP2, HF, and BLYP with the aug-cc-pVDZ basis set) quantum mechanics/molecular mechanics (QM/MM) Monte Carlo free energy simulations of liquid water are used here to test the compatibility of various QM methods with four standard empirical “molecular mechanics” (MM) water models. Consistency of QM methods with water models is of particular importance, given the aqueous environment of many of the systems of interest for QM/MM modeling (e.g., biological systems). The results show that treating a single water molecule using a QM method in bulk TIP3P can induce solvent structuring consistent with experiment. The results also show that the TIP4P model is the most suitable water model of those tested for such QM/MM simulations, while the TIP5P model is not well suited. The findings have important implications for future QM/MM method development and applications. They indicate that the choice of MM models should be made carefully for consistency and compatibility in QM/MM simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.