Abstract

Surfactant Enhanced In-Situ Chemical Oxidation (S-ISCO) is an emerging technology in the remediation of sites with residual Dense Non-Aqueous Phase Liquids (DNAPLs), a ubiquitous problem in the environment and a challenge to solve. In this work, three nonionic surfactants: E-Mulse3® (E3), Tween80 (T80), and a mixture of Tween80-Span80 (TS80), and an anionic surfactant: sodium dodecyl sulfate (SDS), combined with persulfate activated by alkali (PSA) as oxidant have been investigated to remove the DNAPL generated as liquid waste in lindane production, which is composed of 28 chlorinated organic compounds (COCs).Because the compatibility between surfactants and oxidants is a key aspect in the S-ISCO effectiveness the unproductive consumption of PS by surfactants was investigated in batch (up to 864 h) varying the initial concentration of PS (84–42 mmol·L−1) and surfactants (0–12 g·L−1) and the NaOH:PS molar ratio (1 and 2). The solubilization capacity of a partially oxidized surfactant was analyzed by estimating its Equivalent Surfactant Capacity, ESC, (as mmolCOCs dissolvedgsurf−1) and comparing it to the expected value for an unoxidized surfactant, ESCo. Finally, the abatement of DNAPL with simultaneous addition of surfactant and PSA was studied.At the conditions used, a negligible unproductive consumption of PS was found by SDS; meanwhile, PS consumption at 360 h ranged between 70 and 80% using the nonionic surfactants. The highest ratios of ESC/ESCo were found with SDS and E3 and these surfactants were chosen for the S-ISCO treatment. When oxidant and surfactant were simultaneously applied for DNAPL abatement the COC conversion was more than three times higher with E3 (0.6 at 360 h) than SDS. Moreover, it was obtained that the time needed for the removal of a mass of DNAPL by PSA in the absence of surfactants was notably higher than the time required when a suitable surfactant was added.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.