Abstract

Imbedded-fiber retraction (IFR) has been applied to study the compatibility of high polymers. IFR measures the interfacial tension between two immiscible high-viscosity thermoplastic resins in their molten states. Ten nonreactive blend pairs were studied. One blend component was a poly(styrene-co-acrylonitrile-co-fumaronitrile) terpolymer resin (S/AN/FN). The other component was one of a set of ten S/AN resins with an AN level between 0 and 51%. These high-molecular-weight resins were particularly challenging for IFR since they were nearly isorefractive, had high melt viscosities (103–105 Pa s), and could chemically age when molten. Interfacial tensions γ12 ranged from 0.00 to 5.5 dyn/cm at 200 °C. Miscible bends had γ12 = 0 and a single Tg.Immiscible blends had γ12 > 0 and two Tgs. Compatibility was quantitatively assessed from the monotonic rise in γ12 as compatibility decreases. The results demonstrate that IFR can rank the compatibility of high polymers. It is expected that IFR can also rank the compatibility of polymers with similar Tgs,and rank the ability of additives to enhance blend compatibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.