Abstract

Formulations with two or more active pharmaceutical ingredients (APIs) are a researched trend due to their convenient use compared with multiple medications. Moreover, drug-drug combinations may have a synergistic effect. Drotaverine hydrochloride (D-HCl) is commonly used for its antispasmodic action. The combination of a spasmolytic and an analgesic drug such as ibuprofen (Ibu) or ketoprofen (Ket) could become the answer for the treatment of localized pain. D-HCl:Ibu and D-HCl:Ket drug-drug interactions leading to the formation of eutectic compositions with increased bioavailability, obtained by mechanosynthesis, a green, solvent-free method was explored for the first time. The compatibility of Ibuprofen, Ketoprofen, and Drotaverine Hydrochloride was investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier-Transform Infrared spectroscopy (FTIR). Solid-liquid equilibrium (SLE) phase diagrams for the binary systems of active pharmaceutical ingredients were developed and the Tammann diagrams were designed to determine the eutectic compositions. The excess thermodynamic functions GE for the pre-, post-, and eutectic compositions were obtained using the computed activity coefficients data. Results show that drotaverine-based pharmaceutical forms for pain treatment may be obtained at 0.9 respectively 0.8 molar fractions of ibuprofen and ketoprofen which is advantageous because the maximum allowed daily dose of Ibu is about 6 times higher than those of D-HCl and Ket. The obtained eutectics may be a viable option for the treatment of pain associated with cancer therapy.

Highlights

  • Nowadays, multiple medications are an issue that the pharmaceutical industry tries to address by developing new formulations containing two or more active pharmaceutical ingredients (APIs) that act simultaneously and synergistically, eventually without having adverse effects on the body

  • Pharmaceutical cocrystals may potentiate the physicochemical and mechanical properties of the substances [3], bioavailability [4], solubility [4,5] or stability [3,6] as well as in vivo activity [1], while a eutectic mixture behaves like a single pure substance having a melting temperature lower than that of the components which is correlated with increased bioavailability [7]

  • Mechanosynthesis, a simple, rapid, and ecological method was used for the preparation of the binary systems of APIs

Read more

Summary

Introduction

Multiple medications are an issue that the pharmaceutical industry tries to address by developing new formulations containing two or more active pharmaceutical ingredients (APIs) that act simultaneously and synergistically, eventually without having adverse effects on the body. An optimal formulation of this kind can be achieved by forming cocrystals or eutectic mixtures [1,2]. Pharmaceutical cocrystals may potentiate the physicochemical and mechanical properties of the substances [3], bioavailability [4], solubility [4,5] or stability [3,6] as well as in vivo activity [1], while a eutectic mixture behaves like a single pure substance having a melting temperature lower than that of the components which is correlated with increased bioavailability [7]. Ibuprofen (RS)-2-(4-(2-methylpropyl) phenyl) propionic acid (Figure 1a) and Ketoprofen (RS) 2-(3-benzophenyl)-propionic acid (Figure 1b) are propionic acid derivatives

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call