Abstract
CLAM steel is considered as a structural material to be used in the Test Blanket Module as a barrier or blanket adjacent to liquid LiPb in fusion reactors. In this paper, CLAM steel is welded by tungsten inert gas (TIG) welding, and the compatibility of the weldment with liquid LiPb is tested. Specimens were corroded in static liquid LiPb, with corrosion times of 500h and 1000h, at 550°C, and the corresponding weight losses are 0.272mg/cm2 and 0.403mg/cm2 respectively. Also the corrosion rate decreases with increased corrosion time. In the as-welded condition, corrosion resistance of the weld zone is higher than that of the HAZ (Heat Affected Zone). Likely, thick martensite lath and large residual stresses at the welding zone result in higher corrosion rates. The compatibility of CLAM steel weld joints with high temperature liquid LiPb can be improved to some extent through a post-weld tempering process. The surface of the as-welded CLAM steel is uniformly corroded and the concentration of Cr on the surface decreases by about 50% after corrosion. Penetration of LiPb into the matrix is observed for neither the as-welded nor the as-tempered conditions. Influenced by thick martensite lath and large residual stresses, the welded area, especially the weld zone, is easily corroded, therefore it is of primary importance to protect the welded area in the solid blanket of the fusion reactor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Fusion Engineering and Design
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.