Abstract

Microbial control in integrated pest management (IPM) programs of coffee plantations is an important factor for the reduction of pest population densities. The use of selective pesticides can be associated with entomopathogens, increasing the efficiency of the control and reducing the use of required insecticides. The in vitro fungitoxic effect of insecticide formulations of Thiamethoxam, Cyfluthrin, Deltamethrin, Alpha-Cypermethrin, Triazophos, Chlorpyrifos, Fenpropathrin and Endosulfan and Beauveria bassiana (CG 425 strain) was evaluated at three concentrations (FR = average field recommendation; 0.5 ´ FR and 2 ´ FR). Effects of these products on conidia germination, vegetative growth and sporulation were compared. Only five insecticides, at the FR concentration, promoted conidia viability higher than 60%. Viability should be considered the most important factor to be evaluated since it is the first step of the infection process. The insecticide formulations of Alpha-Cypermethrin, Thiamethoxam and Cyfluthrin caused the lower inhibition level on conidia germination at the two lower concentrations, with no difference in relation to the control. With respect to vegetative growth analysis, Thiamethoxam at the two lower concentrations was not found to cause radial growth inhibition. Thiamethoxam caused the smallest inhibition level with regard to conidia production. The use of Alpha-Cypermethrin and Thiamethoxam formulations in coffee IPM programs for a B. bassiana inoculum conservation strategy are recommended, since these products were compatible with the entomopathogenic fungus Beauveria bassiana (CG 425), an important natural control agent of the coffee berry borer, Hypothenemus hampei.

Highlights

  • Entomopathogenic fungi are important natural control agents of many insects, including several pests (Carruthers & Hural, 1990)

  • Scientia Agricola, v.60, n.4, p.663-667, Oct./Dec. 2003 ticular when accomplished by entomopathogens, is a technique that should be considered as an important pest population density reduction factor in Integrated Pest Management (IPM) programs

  • The selectivity/compatibility of products/formulations utilized as sprays, such as insecticides, leaf fertilizers, herbicides and fungicides, with the natural control agent, namely the fungus B. bassiana in the case of the coffee berry borer, is a factor of great importance for the development of an IPM strategy for the crop

Read more

Summary

Introduction

Entomopathogenic fungi are important natural control agents of many insects, including several pests (Carruthers & Hural, 1990). The utilization of selective insecticides in association with pathogens can increase the efficiency of control, allowing the reduction of the amount of applied insecticides, minimizing environmental contamination hazards and the expression of pest resistance (Moino & Alves, 1998; Quintela & McCoy, 1998). The coffee berry borer, Hypothenemus hampei, is naturally controlled by the entomopathogenic fungus Beauveria bassiana. The selectivity/compatibility of products/formulations utilized as sprays, such as insecticides, leaf fertilizers, herbicides and fungicides, with the natural control agent, namely the fungus B. bassiana in the case of the coffee berry borer, is a factor of great importance for the development of an IPM strategy for the crop

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call