Abstract

A balance between catalytic activity and product selectivity remains a dilemma for the partial oxidation processes because the products are prone to be overoxidized. In this work, we report on the partial oxidation of benzyl alcohol using a modified catalyst consisting of nanosized Au-Pd particles (NPs) with tin oxide (SnOx) deposited on a mesoporous silica support. We found that the SnOx promotes the autogenous reduction of PdO to active Pd0 species on the Au-Pd NP catalyst (SnOx@AP-ox) before H2 reduction, which is due to the high oxophilicity of Sn. The presence of active Pd0 species and the enhancement of oxygen transfer by SnOx led to high catalytic activity. The benzaldehyde selectivity was enhanced with the increase of SnOx content on catalyst SnOx@AP-ox, which is ascribed to the modulated affinity of reactants and products on the catalyst surface through the redox switching of Sn species. After H2 reduction, SnOx was partially reduced and Au-Pd-Sn alloy was formed. The formation of Au-Pd-Sn alloy weakened both the catalytic synergy of Au-Pd alloy NPs and the adsorption of benzyl alcohol on the reduced catalyst, thus leading to low catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.