Abstract

In this paper, a novel core@shell nanosphere (TiO2@CoAl-LDH) based on layered double hydroxide (LDH) combined with a nano-TiO2 semiconductor was synthesized and introduced to cementitious materials via spraying technology and a smearing method. The compatibility with a cementitious matrix and the effects of TiO2@CoAl-LDH on cement hydration, surface microstructure, and the microscopic mechanical properties of mortar were investigated by AFM, microhardness testing, FESEM, and BET analysis. Meanwhile, the effects of TiO2@CoAl-LDH introduction methods on the photocatalytic performance and durability of the photocatalyst were systematically evaluated by methylene blue (MB) removal ratio and wear testing. The results show that TiO2@CoAl-LDH exhibits enhanced compatibility with cementitious matrices and a higher photocatalytic capacity than individual CoAl-LDH and nano-TiO2. The photocatalytic mortar prepared via spraying technology (CM-C) displays a higher photocatalytic capacity than that prepared via the smearing method (CM-S). Among them, the mortar with two layers of photocatalytic coatings (CM-C2) has the highest MB removal ratio, which reached 95.1% within 120 min of UV-visible light irradiation. While on the other hand, the wear test revealed that the smeared mortar has a higher photocatalytic capacity and better photocatalyst durability than the sprayed mortar. This work is expected to contribute to the development of multifunctional sustainable building materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.