Abstract
We define compatibilities between continuous semilattices as Scott continuous functions from their pairwise cartesian products to $\{0,1\}$ that are zero preserving in each variable. It is shown that many specific kinds of mathematical objects can be regarded as compatibilities, among them monotonic predicates, Galois connections, completely distributive lattices, isotone mappings with images being chains, semilattice morphisms etc. Compatibility between compatibilities is also introduced, it is shown that conjugation of non-additive real-valued or lattice valued measures is its particular case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.