Abstract

One of the limiting factors for GNSS geolocation capabilities is the clock technology deployed on the satellites and the knowledge of the satellite position. Consequently, there are numerous ongoing efforts to improve the stability of space-deployable clocks for next-generation GNSS. The COMPASSO mission is a German Aerospace Center (DLR) project to demonstrate high-performance quantum optical technologies in space with two laser-based absolute frequency references, a frequency comb and a laser communication and ranging terminal establishing a link with the ground station located in Oberpfaffenhofen, Germany. A successful mission will strongly improve the timing stability of space-deployable clocks, demonstrate time transfer between different clocks and allow for ranging in the mm-range. Thus, the technology is a strong candidate for future GNSS satellite clocks and offers possibilities for novel satellite system architectures and can improve the performance of scientific instruments as well. The COMPASSO payload will be delivered to the international space station in 2025 for a mission time of 2 years. In this article, we will highlight the key systems and functionalities of COMPASSO, with the focus set to the absolute frequency references.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.