Abstract

This paper presents a software tool for test pattern compaction combined with compression of the test patterns to further reduce test data volume and time requirement. Usually the test set compaction is performed independently on test compression. We have implemented a test compaction and compression scheme that reorders test patterns previously generated in an ATPG in such a way that they are well suited for decompression. The compressed test sequence is decompressed in a scan chain. No design changes are required to be done in the functional part of the circuit. The tool is called COMPAS and it finds a sequence of overlapping patterns; each pattern detects a maximum number of circuit faults. Each pattern differs from the contiguous one in the first bit only, the remaining pattern bits are shifted for one position towards the last bit. The pattern first bits are stored in an external tester memory. The volume of stored data is substantially lower than in other comparable test pattern compression methods. The algorithm can be used for test data reduction in System on Chip testing using the IEEE P 1500 Standard extended by the RESPIN diagnostic access. Using this architecture the compressed test data are transmitted through a narrow test access mechanism from a tester to the tested SoC and the high volume decompressed test patterns are shifted through the high speed scan chains between the System on Chip (SoC) cores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.