Abstract

The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine) is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species (ROS), redox signaling, the modulation of defense gene expression, and the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment-specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment-specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, tobacco mosaic virus). The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g., glutathione synthesis takes place in chloroplasts and the cytosol). Thus this review will reveal the compartment-specific importance of glutathione during abiotic and biotic stress conditions.

Highlights

  • The subcellular distribution of glutathione in plants is of great importance as this multifunctional metabolite is essential for plant development and growth (Kocsy et al, 2013)

  • High levels of glutathione in chloroplasts and peroxisomes seem to be of special importance during abiotic stress situations that negatively interfere with photosynthesis such as high light and salt stress

  • (4) on the correlation, combination and progression of current (and possible new) methods available for the detection of subcellular glutathione in order to achieve a combined measurement of the actual glutathione concentration and the redox state in each cell compartment during abiotic and biotic stress conditions, and (5) on combining this data with changes (i) in the subcellular distribution of reactive oxygen species (ROS), (ii) in the transcription of related genes and (iii) changes in the proteome in order to receive a more detailed picture on the physiological relevance and the interplay of ROS and antioxidants especially glutathione in plants during abiotic and biotic stress

Read more

Summary

Bernd Zechmann *

The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine) is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species (ROS), redox signaling, the modulation of defense gene expression, and the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment-specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants.

INTRODUCTION
Subcellular glutathione contents during stress
METHODS
Mitochondria Chloroplasts Nuclei Peroxisomes Cytosol Vacuoles Apoplast
SUBCELLULAR RESPONSE OF PLANTS TO ABIOTIC STRESS
SUBCELLULAR RESPONSE OF PLANTS TO BIOTIC STRESS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.