Abstract

Integration of hydrogeological and geological data into a conceptual model is critical for site investigation programs, since this model is the basis for hydrogeological modeling and for engineering. In the Hungarian Radioactive Waste Disposal Investigation Program, several methods have been used to characterize the potential host rock (granite) at the Bataapati site for a repository for low and intermediate level radioactive waste. Hydrogeological data acquisition revealed some characteristic aspects of the site. One of the most important is the presence of extensive rock deformation zones (faults) with low hydraulic conductivity, which strongly reduce the direct hydraulic communication between adjacent blocks of rock (compartmentalization). This characteristic of the rock mass results in a mosaic-like distribution of rock compartments, each with an almost constant hydraulic head. Within the compartments, hydraulic tests have shown that transmissivity is strongly scale dependent: the larger the scale, the higher the measured transmissivity. The extensive highly transmissive zones cause very low hydraulic gradients within each block, thus the transport processes are strongly influenced by the low or average transmissivity zones and the rock matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.