Abstract

We have studied the kinetics of guanine incorporation into DNA in mouse T-lymphoma (S-49) mutant cells [PNPase (purine-nucleoside phosphorylase)- and HGPRTase (hypoxanthine: guanine phosphoribosyltransferase)-deficient] that are incapable of converting dGuo (deoxyguanosine) to Gua (guanine) ribonucleotides. Of the two possible pathways for an exogenous guanine source to reach DNA, firstly: dGuo----dGMP----dGDP----dGTP and secondly: Gua----GMP----GDP----dGDP----dGTP only the second pathway was found to be functional in providing guanine for DNA replication, although deoxyguanosine readily produced toxic cellular dGTP levels via the first pathway. The functional guanine-nucleotide-precursor pools for DNA are rather small; further, the depletion of the small GMP pool, but not that of GDP, GTP and dGTP, correlated well with the inhibition of DNA synthesis by mycophenolic acid, an IMP dehydrogenase inhibitor. These results support the hypothesis that guanine-nucleotide incorporation into DNA is highly compartmentalized and that a small functional guanine-nucleotide pool, e.g., the GMP pool, may serve a crucial role in limiting the availability of DNA precursor substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call