Abstract
During development, embryonic tissues are shaped in a species-specific manner. Yet, across species, general classes of tissue remodeling events occur, such as tissue infolding and tissue elongation. The spatiotemporal control of these morphogenetic processes is responsible for the organization of different body plans, as well as for organogenesis. Cell morphogenesis in a mesenchyme contributes to the shaping of embryonic tissues. Epithelial cells, despite that they need to maintain an apicobasal organization, play an equally important role during morphogenesis. Moving from apical to basal, we review compartmentalized cellular rearrangements underlying tissue remodeling in Drosophila and compare them with those found in other organisms. Contractile activity at the apical surface triggers tissue folding and invagination. The regulation of adhesion at adherens junctions controls polarized neighbor exchange during intercalation and tissue elongation. Basolateral protrusive activity underlies other cases of intercalation. These localized cell shape changes are spatially regulated by developmental signals. Some signals define a local change in cell behavior (e.g., apical constriction), others orient a dynamic process in the plane of the tissue (e.g., junction remodeling).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.