Abstract

During cell division, dramatic microtubular rearrangements driven by cyclin B-cdk1 (Cdk1) kinase activity mark mitosis onset leading to interphase cytoskeleton dissolution and mitotic spindle assembly. Once activated by Cdc25, that reverses inhibitory phosphorylation operated by Wee1/Myt1, Cdk1 clears the cytoplasm from microtubules by inhibiting microtubule associated proteins (MAPs) with microtubule growth-promoting properties. Nevertheless, some of these MAPs are required for spindle assembly, creating quite a conundrum. We show here that a Cdk1 fraction bound to spindle structures escaped Cdc25 action and remained inhibited by phosphorylation (i-Cdk1) in mitotic human cells. Loss or restoration of i-Cdk1 inhibited or promoted spindle assembly, respectively. Furthermore, polymerizing spindle microtubules fostered i-Cdk1 by aggregating with Wee1 and excluding Cdc25. Our data reveal that spindle assembly relies on compartmentalized control of Cdk1 activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.