Abstract

Compartmentalized bioreactions are vital for living cells to regulate biological events since they facilitate isolated yet orchestrated reactions and releases of biological molecules. Engineering bioreactions in compartmentalized droplet bioreactors not only promotes understanding of biological cells but also enhances control in synthetic biology systems. A typical droplet bioreactor is enclosed by impermeable water-in-oil interfaces, which inhibit the reaction rate with the accumulation of aqueous products. This work constructs aqueous two-phase system (ATPS) droplet bioreactors featuring selectively permeable interfaces, which are capable of sequestering reagents in aqueous droplets while constantly releasing products into the aqueous surroundings. Benefiting from this selective permeability, the proposed droplet bioreactor achieves a conversion rate up to 63.2% compared to the 17.9% from the impermeable aqueous-in-oil droplet reactor via coupled reaction-separation. More importantly, it is revealed that uniform aqueous-in-aqueous droplet clusters by microfluidics exhibit an up to 6-fold reaction rate enhancement compared to non-microfluidic ATPS reactors, indicating a unique flow interface effect in droplet clusters. This work offers a new route to allow enzymatic reactions to benefit from efficient flow chemistry via optimized aqueous-aqueous interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call