Abstract

Gap junctional intercellular communication (GJIC) plays a major role in cochlear function. Recent evidence suggests that connexin 26 (Cx26) and Cx30 are the major constituent proteins of cochlear gap junction channels, possibly in a unique heteromeric configuration. We investigated the functional and structural properties of native cochlear gap junctions in rats, from birth to the onset of hearing [postnatal day 12 (P12)]. Confocal immunofluorescence revealed increasing Cx26 and Cx30 expression from P0 to P12. Functional GJIC was assessed by coinjection of Lucifer yellow (LY) and Neurobiotin (NBN) during whole-cell recordings in cochlear slices. At P0, there was restricted dye transfer between supporting cells around outer hair cells. Transfer was more extensive between supporting cells around inner hair cells. At P8, there was extensive transfer of both dyes between all supporting cell types. By P12, LY no longer transferred between the supporting cells immediately adjacent to hair cells but still transferred between more peripheral cells. NBN transferred freely, but it did not transfer between inner and outer pillar cells. Freeze fracture further demonstrated decreasing GJIC between inner and outer pillar cells around the onset of hearing. These data are supportive of the appearance of signal-selective gap junctions around the onset of hearing, with specific properties required to support auditory function. Furthermore, they suggest that separate medial and lateral buffering compartments exist in the hearing cochlea, which are individually dedicated to the homeostasis of inner hair cells and outer hair cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call