Abstract

We investigated compartment-specific water diffusion properties in two widely structurally different isolated bovine nerves. Sciatic and optic nerves were immersed in saline containing Gd-DTPA(2+). Consequently, T(1) became non-monoexponential and fit well to a biexponential function. q-Space diffusion data were collected for each component. In the sciatic nerve, the slow-decaying component (T(1s)) was considerably more restricted and directional than the fast-decaying component (T(1f)). In the optic nerve, fractional anisotropy of both components was comparable and similar to that of the total H(2)O signal. The root mean square of the displacement distribution functions of T(1s) correlated well with the widely different axonal diameters of both nerves. Possibly, the source of T(1s) is the intra-axonal compartment and that of T(1f) is associated with the inter-axonal space. The compartment specificity of the method shown makes it useful for the investigation of the contribution of each nerve compartment to diffusion tensor imaging measurements and other diffusion-based methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.