Abstract

In this paper a mathematical description of a presynaptic episode of slow synaptic neuropeptide transport is proposed. Two interrelated mathematical models, one based on a system of reaction diffusion partial differential equations and another one, a compartment type, based on a system of ordinary differential equations (ODE) are formulated. Processes of inflow, calcium triggered activation, diffusion and release of neuropeptide from large dense core vesicles (LDCV) as well as inflow and diffusion of ionic calcium are represented. The models assume the space constraints on the motion of inactive LDCVs and free diffusion of activated ones and ions of calcium. Numerical simulations for the ODE model are presented as well. Additionally, an electronic circuit, reflecting the functional properties of the mathematically modelled presynaptic slow transport processes, is introduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.