Abstract

This paper reports an investigation into the performance of two commercial computational fluid dynamics (CFD) codes for pulverised coal combustion prediction. The two codes employed were FLUENT and FLOW3D 3.2 (now called CFX). The experimental case considered was a 2.5 MW Aerodynamically Air Staged Burner (AASB) fired in isolation into a rectangular furnace. Predictions were compared to velocity, temperature and species concentration experimental data. Some slight differences were noted between the two CFD codes predictions beyond one burner diameter downstream of the burner exit. Discrepancies between the predictions of the two CFD codes were concluded to be due to differences in the physical models used to describe devolatilisation and gaseous combustion. This paper therefore concludes that, for this case, the two commercial CFD codes were capable of predicting good `trend' answers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.