Abstract

In this paper, comparisons of thermomechanical fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) subjected to different phase angles of θ = 0, π/3, π/2, and π have been investigated. The shape, location, and area of fatigue hysteresis loops are affected by the phase angle under the thermomechanical cyclic loading. The effects of fiber volume fraction, fatigue peak stress, matrix crack spacing, interface frictional coefficient, and interface debonded energy on the thermomechanical fatigue hysteresis loops and fiber/matrix interface slip of different phase angles are discussed. The fatigue hysteresis loops of cross-ply CMCs under the phase angles of θ = 0 and π are predicted for different fatigue peak stresses and cycle numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.