Abstract

Comparisons are undertaken between the hydraulics of channelized water flows on Mars, large terrestrial rivers, deep-sea turbidity currents, and the catastrophic flow of Lake Missoula floods. Expected bottom shear stresses, velocities and discharges, flow powers, and other parameters are computed for each. Sand transport rates and the times required for channel erosion are estimated for Mangala Channel. These calculations indicate that the turbidity currents and Lake Missoula floods were similar to channelized water flow on Mars in their flow characteristics and in their abilities to erode and transport sediments. Like the Lake Missoula floods, deep-sea turbidity currents are catastrophic in character, being formed by the slumping of large masses of sediment trapped in submarine canyons or deposited on the continental slope. The repeated flows originating from submarine canyons have formed deep-sea channels similar in scale and overall morphology to the Martian outflow channels. The submarine canyon can be viewed as the counterpart of the chaotic terrain or crater which serves as sources for many Martian channels. Like most Martian outflow channels, the deep-sea channels generally lack tributaries or have only minor tributaries, instead consisting of a single pronounced channel extending for several hundred kilometers from its origin at the submarine canyon to deep abyssal depths. The channels vary considerably in dimensions, but most commonly have widths in the range 2 to 15 km with reliefs of 50 to 450 meters, again similar in scale to the Martian channels. Other similarities include sections of anastomosing channels, a general lack of pronounced meandering, and a lack of an apparent “delta” where the transported sediments are deposited. The similarities of channel morphology and flow hydraulics indicate the deep-sea channels and turbidity currents can be useful in furthering our understanding of the Martian outflow channels. Physical processes in the deep-sea occur under a reduced effective gravity because of the overlying water with its buoyancy. The deep-sea channels provide another set of Earth-based channels which can be studied to determine the effects of gravity on such factors as channel meandering and anastomosing characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.