Abstract

Ankyrin repeat (AR) proteins are one of the most abundant repeat protein classes in nature, and they are involved in numerous physiological processes through mediating protein/protein interactions. The repetitive and modular architecture of these AR proteins may lead to biochemical and biophysical properties distinct from those of globular proteins. It has been demonstrated that like most globular proteins, AR proteins exhibit a two-state, cooperative transition in chemical- and heat-induced unfolding. However, the biophysical characteristics underlying such cooperative unfolding remain to be further investigated. In the present study, we evaluated the conformational stability of a group of cyclin-dependent kinase (CDK) 4-interacting AR proteins, P16, P18, IkappaBalpha, gankyrin, and their truncated mutants under different conditions, including the presence of denaturants, temperature, and pH. Our results showed that the first four N-terminal ARs are required to form a potent and stable CDK4 modulator. Moreover, in spite of their similarities in skeleton structure, CDK4 binding, and cooperative unfolding, P16, P18, IkappaBalpha, and gankyrin exhibited considerably different biophysical properties with regard to the conformational stability, and these differences mainly resulted from the discrepancies in the primary sequence of the relatively conserved AR motifs. Our results also demonstrated that these sequence discrepancies are able to influence the function of AR proteins to a certain extent. Overall, our results provide important insights into understanding the biophysical properties of AR proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.