Abstract
The ex-core detector response calculation is an important part in reactor design. However, the response function cannot be measured by experiments quantitatively. Ex-core detector response simulation is therefore required. For decades, the SN code has been used as the dedicated tool. Nowadays, more and more engineers are expressing an interest in using the Monte-Carlo method instead of the SN method in simulations, as it is expected that the Monte-Carlo method will give higher accuracy. In this paper, the modeling and simulation of ex-core detector responses is briefly reviewed based on the Korean Kori Unit 1 reactor. Then, the differences between the SN simulation and Monte-Carlo simulation are compared. The sensitivity of computational conditions is also discussed. It is shown that the problem dependence of cross sections and meshing dependence of spatial discretization in the ex-core detector response calculations are not as strong as expected. However, the ray effect is the main shortcoming for the SN calculation. Based on the analysis, two benefits are shown by using MCNP for the direct 3D calculation. Firstly, the impact of ray effect is eliminated without using the SN angular discretization. Secondly, the direct 3D calculation is easier to perform based on the powerful ability of 3D modeling and parallel computing of the Monte-Carlo code. The new DRF values are adopted in the dynamic control rod reactivity measurement of Kori Unit 1 reactor. The results show that the new DRF values improve the error of measured control rod worth by a percentage of 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.