Abstract

Abstract Numerical models for sea-ice thickness distribution and velocity are used for ice-dynamics research and ice forecasting. In the modeling work, ERS-1 SAR is an excellent tool, in particular by providing spatial ice-velocity fields as described in the present Baltic Sea study. Ice velocities were extracted from SAR data with 3 and 6 day time intervals using the optical-flow method. A considerable stiffening of the ice pack was observed due to the change in the character of ice déformation under compression from rafting to ridging as the minimum ice thickness increased from 10 to 3O cm. The coastal alignment was strong in the ice motion and the coastal boundary layer width was 20-30 km. An analysis of the SAR data with an ice-dynamics model showed that the observed overall ice-velocity field could be produred using the Hibler viscous-plastic ice rheology. The compressive strength of the ice (over 10 km sc ales) was 2.5x 104 N m−2 ±50% for ridging and negligible for rafting of very thin ice. The shear strength was significant and the normal yield ellipse aspect ratio of 2 was valid. The 3 day time interval is val id for updating an ice model but for detailed ice-dynamics investigations a data frequency of 1 d−1 or higher would be preferable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.