Abstract

The aim of this study is to compare the physicochemical properties and yields of pectins extracted from onion waste under hot acid (HAE) and pulsed ultrasound-assisted extraction (PUAE) methods using different organic-inorganic acids, their mixtures, and pure water. The extraction temperature for experiments carried out under HAE was kept at 90°C for 90 min, whereas PUAE experiments were accomplished at RT in 15 min. In general, HAE gave better pectin yields compared with PUAE due to the significance of the increasing extraction temperature for the release of pectin from the plant matrix. While the maximum pectin yield from onion waste was 16.22% for HAE, the highest yield for PUAE was 9.83%. PUAE provides less time- and energy-consuming extraction of pectin within 15 min and thus seems to be more economic compared with the HAE. According to the physicochemical properties (equivalent weight (EW), degree of esterification (DE), methoxyl (MeO), and galacturonic acid (Gal-A) contents) of obtained pectins, extracted pectins were mostly high methoxy pectin. While the DE and MeO values of pectins extracted in organic acid conditions under HAE were higher, these values were found to be higher for pectins extracted in inorganic acids under PUAE. For acid mixtures, the DE and MeO values of pectins under HAE were mostly found to be lower than those under PUAE. Sequential PUAE and HAE methods for the extraction of pectin from onion waste were also found to be useful in terms of obtaining higher yields and better physicochemical properties. The highest pectin yield was 20.32% for the sequential PUAE and HAE methods. FT-IR analyses of the extracted pectins by both HAE and PUAE methods showed similar vibration bands compared with those of commercial citrus pectin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.