Abstract

Radiation-induced pulmonary carcinogenesis was compared in female Wistar rats following either inhalation exposure to alpha-emitting (239)PuO(2) aerosols, whole-body or thoracic X-ray irradiation. Dose-dependent survival reduction was correlated with increased malignant lung tumors at doses over 0.45 Gy, reaching the maximum incidence of 90% at 6.6-8.5 Gy in (239)Pu-exposed rats. While the differential dose responses for each histopathological type of tumors were noted, almost 70-80% were carcinomas among all of the primary tumors from (239)Pu-exposed rats. As the dose response curves for lung carcinomas were compared, the slope of the fit linear equation and the calculated relative effectiveness for 50% incidence of lung carcinomas were approximately 11-times as high in (239)Pu-exposure as those of thoracic X-irradiation. The numbers of tumor lesions distributed in the lung per tumor-bearing animal were about 2-fold more in (239)Pu-exposed rats, while the proportions of their histopathological types were similar between (239)Pu-exposure and X-irradiation. These results indicate that the magnitudes of the relative effectiveness or risk for pulmonary carcinogenesis are greater in (239)Pu-exposure than X-irradiation, and that radiation-induced lung tumors appear to originate mostly from the same target epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.