Abstract

Natural frequencies and mode shapes are obtained for a sinusoidal-shaped shell of revolution by using the Ritz method from a three-dimensional (3-D) analysis instead of a mathematically two-dimensional (2-D) thin shell theory or high order thick shell theory. The present analysis uses circular cylindrical coordinates instead of 3-D shell coordinates, which have been used in traditional shell analyses. Convergence studies can analyze the first five frequencies to four-digit exactitude. Results are given for a variety of shallow and deep sinusoidal-shaped shells with different boundary conditions. The sinusoidal-shaped shells are very similar to paraboloidal shells in shape. The frequencies of the sinusoidal-shaped shells from the present 3-D method are compared with those from 2-D thin shell theories for paraboloidal shells. The present 3-D method is applicable to very thick as well as thin shells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call