Abstract

During the Acoustic Engineering Test (AET) of the Acoustic Thermometry of Ocean Climate (ATOC) program, acoustic signals were transmitted from a broadband source with 75-Hz center frequency to a 700-m-long vertical array of 20 hydrophones at a distance of 3252 km; receptions occurred over a period of six days. Each received pulse showed early identifiable timefronts, followed by about 2 s of highly variable energy. For the identifiable timefronts, observations of travel-time variance, average pulse shape, and the probability density function (PDF) of intensity are presented, and calculations of internal-wave contributions to those fluctuations are compared to the observations. Individual timefronts have rms travel time fluctuations of 11 to 19 ms, with time scales of less than 2 h. The pulse time spreads are between 0 and 5.3 ms rms, which suggest that internal-wave-induced travel-time biases are of the same magnitude. The PDFs of intensity for individual ray arrivals are compared to log-normal and exponential distributions. The observed PDFs are closer to the log-normal distribution, and variances of log intensity are between (3.1 dB)2 (with a scintillation index of 0.74) for late-arriving timefronts and (2.0 dB)2 (with a scintillation index of 0.2) for the earliest timefronts. Fluctuations of the pulse termination time of the transmissions are observed to be 22 ms rms. The intensity PDF of nonidentified peaks in the pulse crescendo are closer to a log-normal distribution than an exponential distribution, but a Kolmogorov–Smirnov test rejects both distributions. The variance of the nonidentified peaks is (3.5 dB)2 and the scintillation index is 0.92. As a group, the observations suggest that the propagation is on the border of the unsaturated and partially saturated regimes. After improving the specification of the ray weighting function, predictions of travel-time variance using the Garrett–Munk (GM) internal-wave spectrum at one-half the reference energy are in good agreement with the observations, and the one-half GM energy level compares well with XBT data taken along the transmission path. Predictions of pulse spread and wave propagation regime are in strong disagreement with the observations. Pulse time spread estimates are nearly two orders of magnitude too large, and Λ–Φ methods for predicting the wave propagation regime predict full saturation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call