Abstract

The current testing and rating procedure for residential air conditioners and heat pumps is based on a steady-state performance measurement approach with a degradation coefficient to account for cycling losses at part-load conditions. Test equipment performance is measured under various ambient conditions with varying compressor and fan speeds, and the results are propagated through a temperature-bin method to estimate seasonal performance. Although the current rating approach offers a standardized performance metric for comparing the relative performances of different equipment, it involves disabling the native controls and, as a result, does not consider the impact of integrated controls for test units and their dynamic interactions with representative building loads. As an alternative, a load-based testing methodology (CSA EXP07) has been developed in which the dynamic performance of equipment is measured in a test facility by allowing it to respond to a simulated virtual building model. This study compares the steady-state and dynamic load-based performance measurement methodologies for use on a 5-ton residential heat pump system in order to understand the differences and their significance for the next-generation rating procedure. The differences in the two test methodologies' performance evaluation results are discussed with a causal analysis of the observed differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.