Abstract

ABSTRACTMissing data are commonly encountered in self-reported measurements and questionnaires. It is crucial to treat missing values using appropriate method to avoid bias and reduction of power. Various types of imputation methods exist, but it is not always clear which method is preferred for imputation of data with non-normal variables. In this paper, we compared four imputation methods: mean imputation, quantile imputation, multiple imputation, and quantile regression multiple imputation (QRMI), using both simulated and real data investigating factors affecting self-efficacy in breast cancer survivors. The results displayed an advantage of using multiple imputation, especially QRMI when data are not normal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.