Abstract

The present study compared IgA specificity against oral streptococci in colostrum and saliva samples. Sixty-two mother-and-child pairs were included; samples of colostrum (C) and saliva (MS) were collected from the mothers and saliva samples were collected from babies (BS). The specificity of IgA against Streptococcus mutans and S. mitis were analyzed by western blot. Only 30% of babies' samples presented IgA reactivity to S. mutans, while 74 and 80% of MS and C, respectively, presented this response. IgA reactivity to S. mutans virulence antigens (Ag I/II, Gtf and GbpB) in positive samples showed differences between samples for Gtf and especially for GbpB (p < 0.05), but responses to Ag I/II were similar (p > 0.05). The positive response of Gtf-reactive IgA was different between C (90%) and MS (58%) samples (p < 0.05), but did not differ from BS (p > 0.05). GbpB was the least detected, with 48 and 26% of C and MS, and only 5% of BS samples presenting reactivity (p > 0.05). Eight percent of MS and C samples presented identical bands to SM in the same time-point. In conclusion, the differences of IgA response found between C and MS can be due to the different ways of stimulation, proliferation and transportation of IgA in those secretions. The colostrum has high levels of IgA against S. mutans virulence antigens, which could affect the installation and accumulation process of S. mutans, mainly by supplying anti-GbpB IgA to the neonate.

Highlights

  • The oral cavity is an important access route into the human body for several microorganisms, some of which become residents that facilitate the adhesion and accumulation of other species, increasing the complexity of the oral microbial communities

  • Some major antigens expressed in the S. mutans cell surface, such as antigen I/II (Ag I/II), glucosyltransferase (Gtf) and glucan-binding protein B (GbpB), are involved in the ability of these microorganisms to adhere and accumulate in the oral biofilm, promoting the development of dental caries.[5,6,7]

  • IgA concentration was significantly higher in colostrum than in maternal and newborn saliva, which is compatible with the type of secretion and maturation of the mucosal system

Read more

Summary

Introduction

The oral cavity is an important access route into the human body for several microorganisms, some of which become residents that facilitate the adhesion and accumulation of other species, increasing the complexity of the oral microbial communities. Streptococcus mitis is the main bacteria that initially colonizes the oral cavity.[1,2] After tooth eruption new species are more commonly found, such as Streptococcus mutans.[3] these species may be detected in predentate children highly exposed to S. mutans.[4]. Some major antigens expressed in the S. mutans cell surface, such as antigen I/II (Ag I/II), glucosyltransferase (Gtf) and glucan-binding protein B (GbpB), are involved in the ability of these microorganisms to adhere and accumulate in the oral biofilm, promoting the development of dental caries.[5,6,7] Several studies have shown that the induction of

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call