Abstract

This paper presents computations of flow and heat transfer through passages relevant to those used to internally cool gas-turbine blades, using high-Reynolds-number models of turbulence. Three types of internal flows are first examined, which between them contain all the main elements found in blade cooling passages; developing flow through a heated straight duct rotating orthogonally, repeating flow and heat transfer through a straight ribbed duct and flow and heat transfer through a round-ended U-bend of strong curvature square and of cross-section. Next, flows influenced by a combination of these elements are computed. The main objective is to establish how reliably, industry-standard high-Reynolds-number models can predict flow and wall-heat transfer in blade-cooling passages. Two high-Reynolds-number models have been used, the standard version of the high-Re k-ε (EVM) model and the basic high-Re model of stress transport (DSM). In all the cases the second-moment closure (DSM) consistently produced flow and thermal predictions that are closer to available measurements than those of the EVM model. Even the high-Re DSM predictions, however, are not in complete agreement with the experimental data. Comparisons with predictions of earlier studies that use low-Re models of turbulence show that at least some of the remaining differences between the current predictions and experimental data are due to the use of the wall-function approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.