Abstract

Calculating risk from seafood exposure to persistent organic pollutants continues to be problematic as estimates of exposure from diet require extensive monitoring of fish species and limited assessments of bioavailability from sediments where the contaminants tend to reside. Previous studies in our laboratory utilized a laboratory-based isotope dilution method (IDM) to estimate the bioavailability of DDT [1,1,1-trichloro-2, 2-bis(p-chloro-phenyl)ethane] and its metabolites from sediment to biota from a superfund site on the shelf of the Palos Verdes (PVS) Peninsula in California (USA). Using a biota-sediment accumulation factor (BSAF) derived from IDM and biomagnification factors (BMF) calculated from previous studies as well as seafood-consumption data specific to anglers in the PVS area, we estimated cancer and non-cancer risks for anglers and nursing infants representing sensitive groups. Predicted cancer risks from consumption of White croaker (Genyonemus lineatus) to the 50th and 95th percentile to all shore mode anglers were, respectively, 2×10−7 and 7×10−7, which were similar to field studies using fish concentrations of all DDT isomers and their environmental degradates (ΣDDT) from collected animals. The calculated non-cancer hazard quotient values for the 50th and 95th percentile shore mode anglers consuming White croaker from this study (0.008 and 0.023, respectively) were also of similar magnitude as those obtained from studies based on samples obtained solely from fish. For nursing infants, similar results were also observed. These results indicate that estimates of bioavailability using IDM from sediment could be used accurately to determine risk to ΣDDT in humans from fish consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.