Abstract
To rapidly and efficiently measure antioxidant activity (AA) in green tea, near infrared (NIR) spectroscopy was employed with the help of a regression tool in this work. Three different linear and nonlinear regressions tools (i.e. partial least squares (PLS), back propagation artificial neural network (BP-ANN), and support vector machine regression (SVMR)), were systemically studied and compared in developing the model. The model was optimized by a leave-one-out cross-validation, and its performance was tested according to root mean square error of prediction ( RMSEP) and correlation coefficient ( R p ) in the prediction set. Experimental results showed that the performance of SVMR model was superior to the others, and the optimum results of the SVMR model were achieved as follow: RMSEP = 0.02161 and R p = 0.9691 in the prediction set. The overall results sufficiently demonstrate that the spectroscopy coupled with the SVMR regression tool has the potential to measure AA in green tea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.