Abstract

BackgroundTo compare the dynamic corneal response (DCR) and tomographic parameters of thin normal cornea (TNC) with thinnest corneal thickness (TCT) (≤ 500 µm), forme fruste keratoconus (FFKC) and mild keratoconus (MKC) had their central corneal thickness (CCT) matched by Scheimpflug imaging (Pentacam) and corneal visualization Scheimpflug technology (Corvis ST).MethodsCCT were matched in 50 eyes with FFKC, 50 eyes with MKC, and 53 TNC eyes with TCT ≤ 500 µm. The differences in DCR and tomographic parameters among the three groups were compared. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic significance of these parameters. Back propagation (BP) neural network was used to establish the keratoconus diagnosis model.ResultsFifty CCT-matched FFKC eyes, 50 MKC eyes and 50 TNC eyes were included. The age and biomechanically corrected intraocular pressure (bIOP) did not differ significantly among the three groups (all P > 0.05). The index of height asymmetry (IHA) and height decentration (IHD) differed significantly among the three groups (all P < 0.05). IHD also had sufficient strength (area under the ROC curves (AUC) > 0.80) to differentiate FFKC and MKC from TNC eyes. Partial DCR parameters showed significant differences between the MKC and TNC groups, and the deflection amplitude of the first applanation (A1DA) showed a good potential to differentiate (AUC > 0.70) FFKC and MKC from TNC eyes. Diagnosis model by BP neural network showed an accurate diagnostic efficiency of about 91%.ConclusionsThe majority of the tomographic and DCR parameters differed among the three groups. The IHD and partial DCR parameters assessed by Corvis ST distinguished FFKC and MKC from TNC when controlled for CCT.

Highlights

  • To compare the dynamic corneal response (DCR) and tomographic parameters of thin normal cornea (TNC) with thinnest corneal thickness (TCT) (≤ 500 μm), forme fruste keratoconus (FFKC) and mild keratoconus (MKC) had their central corneal thickness (CCT) matched by Scheimpflug imaging (Pentacam) and corneal visualization Scheimpflug technology (Corvis ST)

  • We aimed to explore the changes in the dynamic corneal response (DCR) and corneal tomographic parameters in a population of eyes with CCT-matched thin normal cornea (TNC) controls, forme fruste keratoconus (FFKC), and mild keratoconus (MKC) with TCT ≤ 500 μm

  • IHD and A1DA parameters from Corvis ST showed that FFKC and MKC could be distinguished from TNC

Read more

Summary

Introduction

To compare the dynamic corneal response (DCR) and tomographic parameters of thin normal cornea (TNC) with thinnest corneal thickness (TCT) (≤ 500 μm), forme fruste keratoconus (FFKC) and mild keratoconus (MKC) had their central corneal thickness (CCT) matched by Scheimpflug imaging (Pentacam) and corneal visualization Scheimpflug technology (Corvis ST). A series of changes in the corneal microstructure can alter corneal biomechanics. Patients with KC may have a thick cornea, while normal eyes may have a thin cornea, and CCT affects the diagnosis of related corneal diseases through corneal biomechanical parameters. Some studies have demonstrated a difference in corneal biomechanical parameter values between KC and normal eyes [12]. When the normal cornea is thin, the difference in the biomechanical parameters between the KC and normal cornea may change, thereby affecting KC diagnosis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call