Abstract

Clustered binary data are common in medical research and can be fitted to the logistic regression model with random effects which belongs to a wider class of models called the generalized linear mixed model. The likelihood-based estimation of model parameters often has to handle intractable integration which leads to several estimation methods to overcome such difficulty. The penalized quasi-likelihood (PQL) method is the one that is very popular and computationally efficient in most cases. The expectation–maximization (EM) algorithm allows to estimate maximum-likelihood estimates, but requires to compute possibly intractable integration in the E-step. The variants of the EM algorithm to evaluate the E-step are introduced. The Monte Carlo EM (MCEM) method computes the E-step by approximating the expectation using Monte Carlo samples, while the Modified EM (MEM) method computes the E-step by approximating the expectation using the Laplace's method. All these methods involve several steps of approximation so that corresponding estimates of model parameters contain inevitable errors (large or small) induced by approximation. Understanding and quantifying discrepancy theoretically is difficult due to the complexity of approximations in each method, even though the focus is on clustered binary data. As an alternative competing computational method, we consider a non-parametric maximum-likelihood (NPML) method as well. We review and compare the PQL, MCEM, MEM and NPML methods for clustered binary data via simulation study, which will be useful for researchers when choosing an estimation method for their analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.