Abstract
Background: Ozone (O3) and nitrogen dioxide (NO2) are substances with oxidizing ability in the atmosphere. Only considering the impact of a single substance is not comprehensive. However, people’s understanding of “total oxidation capacity” (Ox) and “weighted average oxidation” (Oxwt) is limited. Objectives: This investigation aims to assess the impact of Ox and Oxwt on the novel coronavirus disease (COVID-19). We also compared the relationship between the different calculation methods of Ox and Oxwt and the COVID-19 infection rate. Method: We recorded confirmed COVID-19 cases and daily pollutant concentrations (O3 and NO2) in 34 provincial capital cities in China. The generalized additive model (GAM) was used to analyze the nonlinear relationship between confirmed COVID-19 cases and Ox and Oxwt. Result: Our results indicated that the correlation between Ox and COVID-19 was more sensitive than Oxwt. The hysteresis effect of Ox and Oxwt decreased with time. The most obvious statistical data was observed in Central China and South China. A 10 µg m−3 increase in mean Ox concentrations were related to a 23.1% (95%CI: 11.4%, 36.2%) increase, and a 10 µg m−3 increase in average Oxwt concentration was related to 10.7% (95%CI: 5.2%, 16.8%) increase in COVID-19. In conclusion, our research results show that Ox and Oxwt can better replace the single pollutant research on O3 and NO2, which is used as a new idea for future epidemiological research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.