Abstract
In spite of the many factors that determine cloud droplet concentrations, relationships were found between cloud condensation nuclei (CCN) and cloud droplet concentrations for the First Aerosol Characterization Experiment (ACE 1). Measurements were made in summertime stratocumulus clouds over the Southern Ocean far from anthropogenic sources. The closest relationship of CCN and droplet concentrations was found for CCN measured just below near‐adiabatic cloud parcels. Moreover, an adiabatic droplet growth model successfully predicted these droplet concentrations from the CCN spectra and updraft velocities. Correlations of the averages of CCN and cloud droplet concentrations over the entirety of each of the flights were also good. The model also predicted, with reasonable accuracy, these flight‐wide average droplet concentrations from flight‐wide average CCN spectra and flight‐wide average cloud updraft velocities. Drizzle was a major reason for the larger variations in droplet concentrations than in CCN concentrations. Vertical differences in CCN concentrations may have also affected cloud droplet concentrations. Despite variabilities in droplet concentrations, there was a clear relationship between CCN and droplet concentrations. Many of the inferred supersaturations (0.5 to 1.4%) in the “adiabatic” clouds ranged higher than some previous estimates (e.g., 0.2%) for stratus clouds. This may have been due to the cleaner air of the Southern Ocean but is more likely attributable to the more intensive analysis used in this study. Nonetheless, even where the inferred cloud supersaturations were lower (i.e., 0.2%), due to reductions of the droplet concentrations, there was still a relationship between CCN and droplet concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.