Abstract

Organic coating's degradation behavior is essential to its corrosion protective function and has been widely studied. A main function of anti-corrosive organic coatings is acting as barriers to water uptake and ion diffusion. It is of great fundamental importance to study the influence of different working fluids on the degradation of organic coatings. In this study, a 3.5wt% NaCl solution and the pure water are adopted as the working fluids based on their distinct properties. The commercially available polyurethane and epoxy based clear coatings are chosen for evaluation. The coating degradation is monitored by electrochemical impedance spectroscopy (EIS) measurement. Equivalent circuit models are employed to interpret the EIS spectra. The time evolution of coating resistance, capacitance, and water volume fraction of the coating is analyzed. Besides the fact that the coating's barrier property is deteriorated by the percolating of both NaCl solution and pure water, we also discover that pure water leads to faster coating degradation, demonstrated by a more substantial decrease in coating resistance, a more prominent increase in coating capacitance, and a greater saturated water volume fraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call