Abstract

We study robustness properties of two types of M-estimators of scale when both location and scale parameters are unknown: (i) the scale estimator arising from simultaneous M-estimation of location and scale; and (ii) its symmetrization about the sample median. The robustness criteria considered are maximal asymptotic bias and maximal asymptotic variance when the known symmetric unimodal error distribution is subject to unknown, possibly asymmetric, £-con-tamination. Influence functions and asymptotic variance functionals are derived, and computations of asymptotic biases and variances, under the normal distribution with ε-contamination at oo, are presented for the special subclass arising from Huber's Proposal 2 and its symmetrized version. Symmetrization is seen to reduce both asymptotic bias and variance. Some complementary theoretical results are obtained, and the tradeoff between asymptotic bias and variance is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.