Abstract

ABSTRACT In biomedical imaging, it is desirable that custom-made accessories for restraint, anesthesia, and monitoring can be easily cleaned and not interfere with the imaging quality or analyses. With the rise of 3D printing as a form of rapid prototyping or manufacturing for imaging tools and accessories, it is important to understand which printable materials are durable and not likely to interfere with imaging applications. Here, 15 3D printable materials were evaluated for radiodensity, optical properties, simulated wear, and capacity for repeated cleaning and disinfection. Materials that were durable, easily cleaned, and not expected to interfere with CT, PET, or optical imaging applications were identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call