Abstract

The global planetary boundary layer height (PBLH) estimated from 11 years (2007–17) of Integrated Global Radiosonde Archive (IGRA) data, Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) soundings, and European Center for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data, are compared in this study. In general, the spatial distribution of global PBLH derived from ERA-Interim is consistent with the one from IGRA, both at 1200 UTC and 0000 UTC. High PBLH occurs at noon local time, because of strong radiation energy and convective activity. There are larger differences between the results of COSMIC and the other two datasets. PBLHs derived from COSMIC are much higher than those from radiosonde and reanalysis data. However, PBLHs derived from the three datasets all exhibit higher values in the low latitudes and lower ones in the high latitudes. The latitudinal difference between IGRA and COSMIC ranges from −1700 m to −500 m, while it ranges from −500 m to 250 m for IGRA and ERA-Interim. It is found that the differences among the three datasets are larger in winter and smaller in summer for most studied latitudes.摘要用11年的全球无线电掩星数据 (COSMIC) , 无线电探空数据 (IGRA) 以及欧洲中心再分析资料 (ERA-Interim) 对全球大气边界层高度 (PBLH) 进行估算比较. 结果表明: (1) 在1200 UTC和0000 UTC, 由ERA-Interim和IGRA数据估算得到的全球PBLH空间分布较为一致, 相关性较好, 在白天正午时候太阳辐射能力较强, 对流活动频繁, 估算得到的大气边界层高度较高. (2) 由COSMIC掩星数据估算得到的边界层高度比探空数据和再分析数据估算结果整体偏大. (3) COSMIC掩星数据, IGRA 探空数据以及 ERA-Interim 再分析资料估算结果都表明边界层高度在低纬度地区偏大, 高纬度地区偏小. (4) 分析不同数据估算边界层高度纬向季节性差异表明, IGRA探空数据和COSMIC数据间差异为-1700m至-500m, IGRA与ERA-Interim之间的差异为-500m至250m.此外, 对于大多数纬度而言, 三个数据集之间的差异在冬季较大, 在夏季较小.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call