Abstract

This article addresses O-atom vacancy defects in the d 0 transition metal (TM) oxides HfO 2 and TiO 2, and Ti substitutions for Sc in the d 0 complex oxide GdScO 3. In each instance this results in occupied TM atoms with d 1 state representations. These are important for different aspects of the ultimate scaling limits for performance and functionality in nano-scale Si devices. The occupancy of d 1 states is cast in terms of many-electron theory in order to determine the effects of correlation on device performance and functionality. The first section of this article identifies equivalent d-state representations using on an ionic model for the effective valence states of Ti and Hf atoms bordering on O-atom vacancy defects. Removal of an O atom to create a neutral vacancy; this is equivalent to the bonding of two electrons to each vacancy site. This give rise to two coupled d 1 states for a mono-vacancy defect. Transitions from these occupied states generate spectroscopic features in the (i) pre-edge shake-up, and (ii) virtual bound state (VBS) shake-off energy regimes in O K edge XAS spectra. The number of states confirm that these are mono-vacancy defects. The second section addresses incorporation of Ti tetravalent impurities into trivalent GdScO 3, forcing Ti into a Ti 3+ state and generating a d 1 electronic structure. Vacancy defect concentrations in HfO 2 are generally <10 19 cm −3. However, the Ti solubility in GdScO 3 is higher, and relative concentrations in excess of 16–17% lead to an insulator to metal transition with a ferri-magnetic electronic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.